B.Sc. Semester III (General) Examination, 2018-19 MATHEMATICS

Course ID : 32110

Course Title : Logic and Sets

Course Code : SPMTH-304SEC-1(T)

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) If $A=\{3,4,5,7,9\}, B=\{5,9,1,6\}$ and $C=\{3,2\}$, find all elements of the set $(A \Delta B) \times C$, when $\Delta=$ symmetric difference of two sets.
(b) List the elements of $A=\{x: x \in \mathbb{N}, 4+x=3\}$. Where \mathbb{N} is the set of natural number.
(c) If $A=\{2,12,32\}$ and $B=\{1,4,8,16\}$ and the universal set $U=\{1,2,4,8,12,16,32\}$ then prove that $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$ where A^{\prime} represents the complement of A.
(d) If $n(A)=20, n(B)=35$ and $n(A \cup B)=45$ by drawing Venn-Euler diagram. Show that $n(A \cap B)=10$.
(e) Write down the elements of the power set of the set $X=\{x, y, z, w\}$.
(f) Find the truth table of the conjunction of two statements p and q.
(g) Find the truth table of the disjunction of two statements p and q.
(h) If $A=\{1,2\}, B=\{2,3\}, C=\{3,4\}$, find $A \times(B \cup C)$.
2. Answer any four questions:
(a) If A, B, C are subsets of the universal set X, prove the following:
(i) $(A \cap B) \cup\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right) \cup\left(A^{\prime} \cap B^{\prime}\right)=X$
(ii) $\left(A \cup B \cup C^{\prime}\right) \cap\left(A \cup B^{\prime} \cup C^{\prime}\right)=A \cup C^{\prime}$.
(b) If A, B, C are subsets of an universal set S. Prove that $A \times(B \cup C)=(A \times B) \cup(A \times C)$.
(c) If $n(A)=100, n(B)=90, n(C)=100, n(A \cap B)=60, n(B \cap C)=40, n(A \cap C)=45$, $n(A \cup B \cup C)=200$, find $n(A \cap B \cap C)$.
(d) Let $\mathrm{p}, \mathrm{q}, \mathrm{r}$ be statements. Then show that distributive law, $p \vee(q \wedge r)=(p \vee q) \wedge(p \vee r)$ holds by truth table.
(e) Find whether the relations R_{1} and R_{2} as defined below in the set $A=\{1,2,3\}$ are
(i) reflexive, (ii) symmetric, (iii) transitive.
(a) $\mathrm{R}_{1}=\{(2,1),(1,2),(3,3)\}$
(b) $\mathrm{R}_{2}=\{(3,3)\}$
$3+2=5$
(f) If R be a relation in the set of integers \mathbb{Z} defined by $R=\{(x, y): x \in \mathbb{Z}, y \in \mathbb{Z},(x-y)$ is divisible by 6$\}$ then prove that R is equivalence relation. Find all the distinct equivalence classes of the relation R.
3. Answer any one question:

$$
10 \times 1=10
$$

(a) (i) Let \mathbb{Z} be the set of all integers and A, B, C, D are the subsets of \mathbb{Z} given by,
$A=\{x \in \mathbb{Z}: 0 \leq x \leq 10\}, B=\{x \in \mathbb{Z}: 5 \leq x \leq 15\}$ $C=\{x \in \mathbb{Z}: x \geq 5\}, D=\{x \in \mathbb{Z}: x \leq 15\}$ then find $A \cup B, A \cap B, B-C, A-D$.
(ii) Let p, q and r be statements. Then show that De Morgan's law $\sim(p \vee q)=(\sim p) \wedge(\sim q)$ holds by truth table.

$$
(2+2+1+1)+4=10
$$

(b) (i) If R be an equivalence relation on the set A , then show that R^{-1} is also an equivalence relation on A.
(ii) If $a \equiv b(\bmod m)$ and $C \equiv d(\bmod m)$ then prove that $a+c \equiv(b+d)(\bmod m)$ and $a c \equiv b d(\bmod m)$.
$(2+2+2)+(2+2)=10$

